

A NEW ROUTE TO 1,4-DIKETONES AND ITS APPLICATION
TO (Z)-JASMONE AND DIHYDROJASMONE SYNTHESIS.

GOFFREDO ROSINI*, ROBERTO BALLINI, PIETRO SORRENTI

Dipartimento di Scienze Chimiche dell'Università

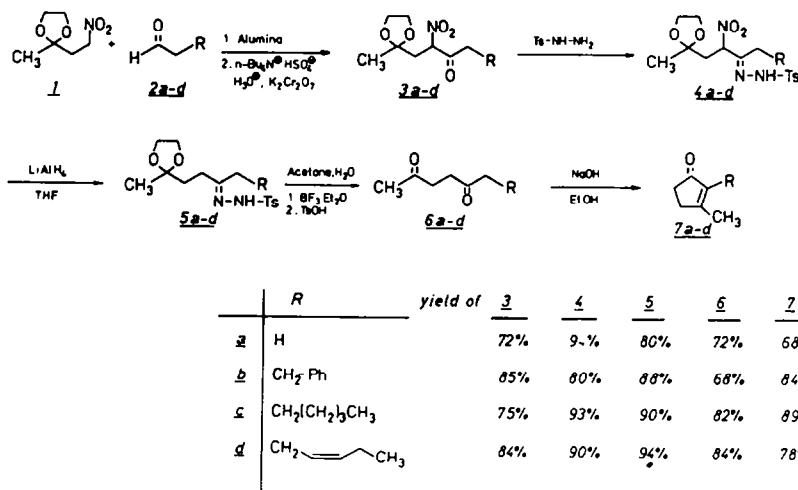
Via S. Agostino n.1, 62032 CAMERINO (Italy)

(Received in the UK 4 August 1983)

Abstract: (Z)-Jasmone, dihydrojasmone and other 3-methylcyclopent-2-en-1-ones are easily synthesized starting from aldehydes and 1-(2-methyl-1,3-dioxolane-2-yl)-2-nitroethane as reagent for 3-ketobutyl anion synthon. Nitro-alcohol condensation is the chainlengthening reaction followed by oxidation and denitration via *p*-toluenesulfonylhydrazone of the corresponding α -nitroketones. Removal of protecting groups gives 1,4-diketones which are then cyclized with alkali.

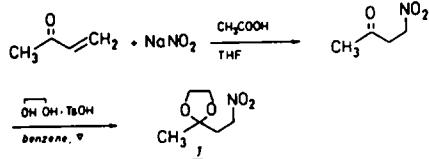
The efficient preparation of 1,4-diketones^{1,2} is a fascinating subject because they can be converted into substituted 3-oxocyclopentenones²⁻⁴ by base catalyzed cyclization. A large number of biologically active natural products possess this moiety as structural feature; among them dihydrojasmone (7c) and (Z)-jasmone (7d) are naturally occurring substrates widely used as important perfume ingredients.

A variety of synthetic approaches for the preparation of 1,4-diketones^{1,2} have been developed but several of the existing methods follow lengthy procedures and/or involve expensive chemicals. The recently disclosed procedures^{5,6} for denitration of α -nitroketones are of interest in that they provide the possibility for the construction of a wide range of functionali-


zed carbon chains which can be further elaborated.

This paper describes a simple synthesis of 1,4-diketones in which this reaction can be considered the key step of the sequence (Scheme 1).

The starting point for the present synthetic scheme is the nitro-alcohol condensation (Henry reaction) on alumina surface⁷ without solvent between aldehydes 2a-d and 1-(2-methyl-1,3-dioxolane-2-yl)-2-nitroethane (1) followed by *in situ* oxidation with potassium dichromate under phase-transfer conditions using tetrabutylammonium hydrogen sulphate as catalyst.


Compound 1 can be considered as reagent for 3-ketobutyl anion synthon and was easily prepared from 3-buten-2-one by reaction with sodium nitrite-acetic acid in tetrahydrofuran at room tempera-

Scheme 1

ture⁸ and successive acid catalyzed (TsOH) ketalization with ethylene glycol in refluxing benzene (Scheme 2).

Scheme 2

On the other hand the (Z)-double bond in the main chain of (Z)-jasmone was derived from (Z)-3-hexen-1-ol, known as "leaf alcohol" and commercially available with more than 97% stereochemical purity; its conversion into (Z)-4-heptenal (2d) was accomplished according the procedure of Stetter and Kuhlmann.⁹

Reaction of α -nitroketones 3a-d with p-toluenesulfonylhydrazine in methanol furnished compounds 4a-d as solid derivatives, easily purified by crystallization. Denitration of compounds 4a-d proceeded smoothly by reaction with lithium aluminium hydride in tetrahydrofuran⁵ to give solid p-toluenesulfonylhydrazones 5a-d in excellent yields. Regeneration of the two differently protected carbonyl groups of compounds 5a-d was accomplished in an one-pot reaction using

boron trifluoride etherate and p-toluenesulfonic acid in acetone. 1,4-Diketones 6a-d were subsequently cyclized to cyclopentenone derivatives 7a-d via an intramolecular aldolization-dehydration.¹⁰ This compound was shown to be identical with authentic specimens of 3-methylcyclopent-2-en-1-one, 3-methyl-2-(2-phenylethyl)cyclopent-2-en-1-one, dihydrojasmone and (Z)-jasmone by spectroscopy (IR, ¹H NMR) and chromatography (TLC, GLC).

We think the present method has some merits since the starting materials are easily accessible and relatively inexpensive. Compared to organometallic reagents frequently used in the chainlengthening reaction to obtain 1,4-diketones, nitroalkane derivative 1 is easy to handle also in scale process. Furthermore reactions give crude products suitable for the next process or products which are easy to purify by crystallization.

We hope that our findings may encourage a much greater use of nitroalkane derivatives as functionalized alkyl anionic synthon.

EXPERIMENTAL

Proton NMR spectra were recorded at 90 MHz on a Varian EM390 instrument and at 100 MHz

on a Varian XL-100 operating in the CW mode. ^1H NMR shifts are given in parts per million from Me_4Si in CDCl_3 solvent. IR spectra were recorded with a Perkin-Elmer 257 spectrophotometer. Microanalyses were performed by using C,H,N Analyzer Model 185 from Hewlett-Packard Co. Vapor-phase chromatographic analyses were performed on a Carlo Erba FRACTOVAP 4160 HRGC instrument using capillary column of fused silica (0.40 \times 45nm \times 25mt) with Carbowax 20M. Buten-3-one, aldehydes 2a-c, ethylene glycol, alumina, tetrabutyl ammonium hydrogensulphate and p-toluene-sulphonylhydrazine are commercial materials. (Z)-4-Heptenal(2d) was prepared in good yield according the procedure of Stetter and Kuhlmann⁹ starting from commercial (Z)-3-hexen-1-ol through its bromide and (Z)-1,1-diethoxy-4-hepten. Tetrahydrofuran (THF) was obtained anhydrous by distillation over lithium aluminium hydride under argon.

1-(2-Methyl-1,3-dioxolan-2-yl)-2-nitroethane(1). Nitrobutan-3-one (4.26 g, 36.4 mmol) prepared in 80% yield according the procedure of Miyakoshi and coworkers⁸, was placed in a dried, nitrogen flushed, 100 ml three-necked flask equipped with a Dean Stark apparatus and condenser. Benzene (50 ml), ethylene glycol (17.0 g, 274 mmol) and p-toluene-sulfonic acid (0.085 g, 0.5 mmol) were added and the solution was refluxed for 24 h removing water. The mixture was cooled and NaHCO_3 saturated aqueous solution (30 ml) added. The organic layer was separated and washed with NaCl saturated aqueous solution (3 \times 30 ml). The inorganic phase was extracted with chloroform (3 \times 30 ml) and the combined organic layers dried (MgSO_4). The solvent was removed at reduced pressure to leave an oil. Vacuum distillation afforded 14.6 g of product (87% yield): bp 83-89°

C (0.8 mm_{Hg}); IR(neat) 1550(NO_2) cm^{-1} ; ^1H NMR δ 4.45(t,2H,J=7.3Hz); 3.93(s,4H); 2.42(t,3H,J=7.3Hz); 1.33(s,3H). Anal. Calcd for $\text{C}_6\text{H}_{11}\text{O}_4\text{N}$: C,44.71; H,6.88; N,8.69. Found: C,44.80; H,6.75; N,8.54.

Preparation of α -Nitroktones 3a-d. General Procedure. A 100 ml, two necked flask was equipped with mechanical stirrer, charged with compound 1 (8.05 g, 0.05 mol) and cooled with an ice-water bath. Aldehyde 2a-d (0.05 mol) was added and the mixture stirred during 2-3 min. Chromatographic alumina (Carlo Erba RS, activity I according Brockman) (10 g) was added and stirring continued for one h at room temperature and then allowed to stand for 23 h. Dichloromethane (100 ml) and tetrabutylammonium hydrogen sulphate (0.1 mol \times mol of substrate) were added under stirring. The mixture was cooled (-5°C) and then a solution of potassium dichromate (9.70 g, 0.033 mol) in 30% sulphuric acid (60 ml) was added dropwise keeping the inner temperature at -5°C to 0°C. After 3 h 10% FeSO_4 solution (50 ml) was added and layers were separated. The organic phase was washed with 10% sodium hydroxide (2 \times 20 ml) solution and water. The solvent was removed at reduced pressure and the crude product dissolved with diethyl ether (30 ml) and eluted through a bed of Florisil. Elimination of the solvent afforded α -nitroktones 3a-d.

1-(2-Methyl-1,3-dioxolan-2-yl)-2-nitrobutan-3-one (3a). Compound 1 and acetaldehyde (2a) gave compound 3a in 72% yield: mp 59-60°C; IR(kBr) 1730(CO), 1558 (NO_2) cm^{-1} . ^1H NMR δ 5.45-5.23(m,1H); 4.05-3.82(m,4H); 2.80-2.50(m,2H); 2.30(s,3H); 1.33(s,3H). Anal. Calcd for $\text{C}_8\text{H}_{13}\text{NO}_5$: C,41.29; H,6.45; N,6.89. Found: C,47.38; H,6.35; N,6.77.

1-(2-Methyl-1,3-dioxolan-2-yl)-2-nitro-5-phenylpentan-3-one (3b). Compound 1 and 3-phenylpropionaldehyde (2b) gave

compound 3b in 85% yield as an oil: IR (neat) 1725 (CO), 1550 (NO₂) cm⁻¹. ¹H NMR δ 7.43-7.05 (m, 5H); 5.40-5.20 (m, 1H); 4.05-3.75 (m, 4H); 2.90 (s, 4H); 2.75-2.40 (m, 2H); 1.30 (s, 3H). Anal. Calcd for C₁₅H₁₉NO₅: C, 61.42; H, 6.53; N, 4.78. Found: C, 61.50; H, 6.62; N, 4.70.

1-(2-Methyl-1,3-dioxolan-2-yl)-2-nitro-nonan-3-one (3c). Compound 1 and heptal-dehyde (2c) gave compound 3c in 75 % yield as an oil: IR(neat) 1730 (CO), 1550 (NO₂) cm⁻¹. ¹H NMR δ 5.48-5.25 (m, 1H); 4.05-3.80 (m, 4H); 2.85-2.35 (m, 4H); 1.80-1.10 ((m+s, 1H); 0.87 (t, 3H, J=6.0Hz). Anal. Calcd for C₁₃H₂₃NO₅: C, 57.12; H, 8.48; N, 5.13. Found: C, 57.22; H, 8.57; N, 5.22.

(Z)-1-(2-Methyl-1,3-dioxolan-2-yl)-2-nitronon-6-en-3-one (3d). Compound 1 and (Z)-4-heptenal (2d) gave compound 3d in 84% yield as an oil: IR(neat) 1730 (CO), 1550 (NO₂) cm⁻¹. ¹H NMR δ 5.75-5.05 (m, 3H) 3.97 (s, 4H); 2.85-1.85 (m, 8H); 1.38 (s, 3H); 0.98 (t, 3H, J=7.5Hz). Anal. Calcd for C₁₃H₂₁NO₅: C, 57.55; H, 7.80; N, 5.16. Found: C, 57.50; H, 7.90; N, 5.20.

Preparation of α-Nitroktones p-Toluene-sulfonylhydrazones (4a-d). General Procedure: A solution of p-toluenesulfonylhydrazine (0.05 mol) in methanol (50 ml) was added to a solution of equimolar amount of α-nitrokone 3a-d, in methanol (50 ml) and the mixture was allowed to stand at room temperature for 8-10 h. The crystalline p-toluenesulfonylhydrazones 4a-d, which crystallize upon cooling of the solution is isolated by suction, dried in vacuo, and used in the reduction step without further purification. An analytical sample may be prepared by recrystallization from methanol or ethanol.

1-(2-Methyl-1,3-dioxolan-2-yl)-2-nitrobutan-3-one p-toluenesulfonylhydrazone (4a): 94 % yield, mp 139-141°C. IR(KBr) 3240 (NH), 1550 (NO₂), 1340, 1160 (SO₂) cm⁻¹. ¹H NMR δ 9.45 (s, 1H); 7.57 (AA'BB' pattern

4H, J=8.0Hz); 5.28 (t, 1H, J=6.7Hz); 3.90-3.58 (m, 4H); 2.70-2.38 (m+s, 5H); 1.98 (s, 3H); 1.38 (s, 3H). Anal. Calcd for C₁₅H₂₁N₃O₆S: C, 48.51; H, 5.70; N, 11.32. Found: C, 48.60; H, 5.81; N, 11.26.

1-(2-Methyl-1,3-dioxolan-2-yl)-2-nitro-5-phenylpentan-3-one p-toluenesulfonylhydrazone (4b): 80 % yield, mp 113-114°C. IR(KBr) 3230 (NH), 1550 (NO₂), 1340, 1160 (SO₂) cm⁻¹. ¹H NMR δ 7.80-6.95 (m, 9H); 5.25-5.05 (m, 1H); 3.98-3.78 (m, 4H); 2.95-2.35 (m+s, 9H); 1.28 (s, 3H). Anal. Calcd for C₂₂H₂₇N₃O₆S: C, 57.26; H, 5.90; N, 9.11. Found: C, 57.30; H, 6.00; N, 9.05.

1-(2-Methyl-1,3-dioxolan-2-yl)-2-nitronon-3-one p-toluenesulfonylhydrazone (4c): 93 % yield, mp 116-118°C. IR(KBr) 3200 (NH) 1538 (NO₂), 1340, 1160 (SO₂) cm⁻¹. ¹H NMR δ 8.3 (s, 1H); 7.57 (AA'BB' pattern, 4H, J=8.0Hz); 5.35-5.15 (m, 1H); 4.05-3.80 (m, 4H) 2.95-2.60 (m, 2H); 2.45 (s, 3H); 2.35-2.10 (m, 2H); 1.60-1.00 (m+s, 11H); 0.85 (t, 3H, J=6.0Hz). Anal. Calcd for C₂₀H₃₁N₃O₆S: C, 54.41; H, 7.08; N, 9.52. Found: C, 54.35; H, 7.00; N, 9.60.

(Z)-1-(2-Methyl-1,3-dioxolan-2-yl)-2-nitronon-6-en-3-one p-toluenesulfonylhydrazone (4d): 90% yield, mp 98-100°C. IR(KBr) 3205 (NH), 1550 (NO₂), 13340, 1160 (SO₂) cm⁻¹. ¹H NMR δ 7.57 (AA'BB' pattern, 4H, J=8.0 Hz); 5.60-5.00 (m, 3H); 3.88 (m, 4H); 2.95-1.65 (m, 11H); 1.30 (s, 3H); 0.90 (t, 3H, J=7.5 Hz). Anal. Calcd for C₂₀H₂₉N₃O₆S: C, 54.66; H, 6.65; N, 9.56. Found: C, 54.70; H, 6.69; N, 9.50.

Denitration of p-Toluenesulfonylhydrazones 4a-d. General Procedure: Dry tetrahydrofuran (100 ml) was placed in a dried nitrogen flushed 250 ml flask fitted with a septum inlet and a magnetic stirring bar. Lithium aluminium hydride (1.14 g, 30 mmol) was added and the mixture cooled to 0°C. p-Toluenesulfonylhydrazones 4a-d (10 mmol) were dissolved in dry tetrahydrofuran (25 ml) and added dropwise (Caution: hydr-

en evolution). The mixture was stirred for 30 min, treated carefully with cold water, acidified with 2N H_2SO_4 and extracted with ether (2x100 ml). The ether layer was dried (Na_2SO_4), passed through a bed of Florisil (30 g) and the solvent was removed at reduced pressure. Crude products 5a-d were crystallized from dichloromethane/cyclohexane.

1-(2-Methyl-1,3-dioxolan-2-yl)butan-3-one p-toluenesulfonylhydrazone (5a): 80 % yield, mp 89-90°C. IR(KBr) 3218(NH), 1340, 1160(SO_2) cm^{-1} . 1H NMR δ 7.57(AA'BB' pattern, 4H, $J=8.0Hz$); 3.95-3.78(m, 4H); 2.40 (s, 3H); 2.35-1.65(m+s, 7H); 1.25 (s, 3H). Anal. Calcd for $C_{15}H_{22}N_2O_4S$: C, 55.20; H, 6.80; N, 8.58. Found: C, 55.15; H, 6.73; N, 8.49.

1-(2-Methyl-1,3-dioxolan-2-yl)-5-phenylpentan-3-one p-toluenesulfonylhydrazone (5b): 88 % yield, mp 55-57°C. IR(KBr) 3220(NH); 1340, 1160(SO_2) cm^{-1} . 1H NMR δ 8.60 (s, 1H); 7.95-6.95(m, 9H); 3.98-3.78(m, 4H); 2.95-2.33(m+s, 7H); 2.20(t, 2H), $J=7.5Hz$; 1.68(t, 2H, $J=7.5Hz$); 1.20(s, 3H). Anal. Calcd for $C_{22}H_{28}N_2O_4S$: C, 53.44; H, 6.78; N, 6.73. Found: C, 63.40; H, 6.85; N, 6.64.

1-(2-Methyl-1,3-dioxolan-2-yl)nonan-3-one p-toluenesulfonylhydrazone (5c): 90 % yield, mp 72-73°C. IR(KBr) 3210(NH); 1340, 1155(SO_2) cm^{-1} . 1H NMR δ 8.60(s, 1H); 7.57 (AA'BB' pattern, 4H, $J=8.0Hz$); 4.00(s, 4H); 2.45(s, 3H); 2.18(t, 4H, $J=7.5Hz$); 1.73(t, 2H, $J=7.5Hz$); 1.40-1.00(m+s, 11H); 0.85(t, 3H, $J=6.0Hz$). Anal. Calcd for $C_{20}H_{32}N_2O_4S$: C, 60.58; H, 8.14; N, 7.07. Found: C, 60.65; H, 8.10; N, 7.00.

(Z)-1-(2-Methyl-1,3-dioxolan-2-yl)non-6-en-3-one p-toluenesulfonylhydrazone (5d): 94 % yield, mp 64-65°C. IR(KBr): 3210(NH) 1340, 1160(SO_2) cm^{-1} . 1H NMR δ 7.57(AA'BB' pattern, 4H, $J=8.0Hz$); 5.55-5.05(m, 2H); 4.00 (s, 4H); 2.42(s, 3H); 2.35-1.60(m, 10H); 1.21 (s, 3H); 0.95(t, 3H, $J=7.5Hz$). Anal. Calcd for $C_{20}H_{30}N_2O_4S$: C, 60.89; H, 7.67; N, 7.10. Found: C, 60.79; H, 7.72; N, 7.00.

Regeneration of 1,4-Diketones 6a-d. General Procedure: p-Toluenesulfonylhydrazone 5a-d (10 mmol) was dissolved in acetone (100 ml) and water (10 ml), distilled boron trifluoride etherate was added and the mixture was stirred at room temperature for 2 h and then p-toluenesulfonic acid (0.43 g, 2.5 mmol) was added. The mixture was stirred at room temperature (12 h) and then evaporated at reduced pressure, diluted with ether (40 ml) and the organic layer dried (Na_2SO_4). Solvent was removed at reduced pressure and the crude product was purified by distillation or by chromatography over a silica gel column (SiO_2 , 0.0063-0.200) with EtOAc/n-hexane (20:80) as eluent.

2,5-Hexanedione (6a): 72% yield; bp 188-190°C. IR(neat) 1705(CO) cm^{-1} . 1H NMR δ 2.85-2.65(m, 4H); 2.18(s, 6H). Anal. Calcd for $C_6H_{10}O_2$: C, 53.31; H, 11.19. Found: C, 53.24; H, 11.09.

7-Phenyl-2,5-heptanedione (6b): 68% yield; bp 112-115°C/ $mmHg$. IR(neat) 1705(CO) cm^{-1} . 1H NMR δ 7.35-7.05(m, 5H); 2.90-2.70(m, 4H); 2.60(s, 4H); 2.10(s, 3H). Anal. Calcd for $C_{13}H_{16}O_2$: C, 76.44; H, 7.90. Found: C, 76.30; H, 7.79.

Undecane-2,5-dione (6c): 82 % yield; mp 33-34°C; bp 140-42°C/14 $mmHg$, litt., ^{11}Hg 141°/14 $mmHg$. IR(KBr) 1700(CO) cm^{-1} . 1H NMR δ 2.68(s, 4H); 2.45(t, 2H, $J=7.5Hz$); 2.18 (s, 3H); 1.75-1.15(m, 8H); 0.85(t, 3H, $J=6.0Hz$). Anal. Calcd for $C_{11}H_{20}O_2$: C, 71.70; H, 10.95. Found: C, 71.69; H, 10.89.

(Z)-Undec-8-ene-2,5-dione (6d): 84% yield bp 138-141°C/3 $mmHg$ (lit., ^{12}Hg 140°C/2 $mmHg$). IR(neat) 1710(CO) cm^{-1} . 1H NMR δ 5.70-5.08 (m, 2H); 2.95-1.85(m+s, 13H); 0.92(t, 3H, $J=7.5Hz$). Anal. Calcd for $C_{11}H_{18}O_2$: C, 72.45; H, 9.95. Found: C, 72.36; H, 9.78.

Cyclization of Diketones 6a-d. Preparation of Cyclopentenones 7a-d; General Procedure: According to the procedure of Burchi and Wuest¹⁰ a solution of diketone

6a-d (50 mmol) in ethanol (45 ml) was added with aqueous sodium hydroxide (0.5 N; 90 ml) and refluxed for 6 h. The mixture was cooled, diluted with water, and extracted with ether. The extract was washed with water and brine and dried (Na_2SO_4). Removal of the solvent gave crude Cyclopentenones 7a-d which was purified by distillation.

3-Methyl-2-cyclopenten-1-one (7a): 68% yield; bp 72-74°C/15 mm_{Hg} (lit., ¹³ 74-76/15 mm_{Hg}). IR(neat) 1700(CO), 1620(C=C) cm^{-1} . ¹H NMR δ 5.74 (m, 1H); 1.96 (d, 3H, J=1.0Hz); 2.50-2.10 (m, 4H). Anal. Calcd for $\text{C}_6\text{H}_8\text{O}$: C, 74.97; H, 8.39. Found: C, 74.57; H, 8.31.

3-Methyl-2-benzyl-2-cyclopenten-1-one (7b): 84 % yield; bp 105-108/0.4 mm_{Hg}. IR(neat) 1690(CO), 1640(C=C) cm^{-1} . ¹H NMR δ 7.4-7.1 (m, 5H); 3.52 (s, 2H); 2.60-2.25 (m, 4H); 2.03 (s, 3H). Anal. Calcd for $\text{C}_{13}\text{H}_{14}\text{O}$: C, 83.83; H, 7.58. Found: C, 83.27; H, 7.71.

Dihydrojasrone (7c): 89% yield; bp 100-102° ¹⁴C/6 mm_{Hg}, (lit., ¹⁴ 88°C/3 mm_{Hg}). IR(neat) 1700 (CO), 1645 (C=C). ¹H NMR δ 2.65-2.00 (m+s, 9H) 1.60-1.10 (m, 6H); 0.88 (t, 3H, J=6.0Hz). Anal. Calcd for $\text{C}_{11}\text{H}_{18}\text{O}$: C, 79.46; H, 10.92. Found C, 79.04; H, 10.54.

(Z)-Jasnone (7d): 78% yield; bp 100-105° ¹²C/1 mm_{Hg}, (lit., ¹² 120-130°C/3 mm_{Hg}). IR(neat) 1695(CO), 1642(C=C) cm^{-1} . ¹H NMR δ 5.65-5.0 (m, 2H); 3.08-2.70 (m, 2H); 2.68-1.78 (m, 9H); 0.98 (t, 3H, J=7.5Hz). Anal. Calcd for $\text{C}_{11}\text{H}_{16}\text{O}$: C, 80.44; H, 9.83. Found: C, 80.86; H, 9.65.

Acknowledgement- Thanks are due to "Ministero della Pubblica Istruzione" and "Consiglio Nazionale delle Ricerche, CNR" for financial support.

REFERENCES

- 1.-M.C.Musatto, D.Savoia, C.Trombini, A.Umani-Ronchi, *J.Org.Chem.* **45**, 4002 (1980) and references cited therein.
- 2.-E.P.Demole, Cap.X Fragrance of Jasmine, in "Fragrance Chemistry. The Science of the Sense of Smell", Ed. Ernst T. Theimer, Academic Press, New York, 1982, pp349-396.
- 3.-R.A.Ellison, *Synthesis*, 397 (1973)
- 4.-T.L.Ho, *Synth.Commun.*, **4**, 265 (1974); *ibid.*, **7**, 351 (1977).
- 5.-G.Rosini, R.Ballini, V.Zanotti, *Synthesis*, 137 (1983)
- 6.-N.Ono, H.Miyake, R.Tamura, A.Kaji, *Tetrahedron Lett.*, 1705 (1981) and references cited therein.
- 7.-G.Rosini, R.Ballini, P.Sorrenti, *Synthesis*, work in press.
- 8.-T.Miyakoshi, S.Saito, J.Kumanotani, *Chem. Lett.*, 1677 (1981)
- 9.-H.Stetter, H.Kuhlmann, *Synthesis*, 379 (1975)
- 10.-G.Buchi, H.Wuest, *J.Org.Chem.*, **31**, 977 (1966)
- 11.-H.Hunsdiecker, *Chem.Ber.*, **75**, 447, 455 (1942)
- 12.-C.S.Subramaniam et al., *J.C.S. Perkin 2*, 2346 (1979)
- 13.-R.M.Acheson, R.Robinson, *J.Chem.Soc.*, **111**, 112 (1952).